A decomposition theorem for planar harmonic mappings
نویسندگان
چکیده
منابع مشابه
Landau's theorem for planar harmonic mappings
Landau gave a lower estimate for the radius of a schlicht disk centered at the origin and contained in the image of the unit disk under a bounded holomorphic function f normalized by f(0) = f ′(0)− 1 = 1. Chen, Gauthier, and Hengartner established analogous versions for bounded harmonic functions. We improve upon their estimates.
متن کاملPlanar Harmonic Univalent and Related Mappings
The theory of harmonic univalent mappings has become a very popular research topic in recent years. The aim of this expository article is to present a guided tour of the planar harmonic univalent and related mappings with emphasis on recent results and open problems and, in particular, to look at the harmonic analogues of the theory of analytic univalent functions in the unit disc.
متن کاملConvolutions of Planar Harmonic Convex Mappings
Ruscheweyh and Sheil-Small proved that convexity is preserved under the convolution of univalent analytic mappings in K. However, when we consider the convolution of univalent harmonic convex mappings in K H , this property does not hold. In fact, such convolutions may not be univalent. We establish some results concerning the convolution of univalent harmonic convex mappings provided that it i...
متن کاملA Spectral Decomposition Theorem for Certain Harmonic Algebras
Introduction. Let K be a simple ring with identity and let A be a harmonic ^-algebra with identity, where neither K nor A is assumed to be commutative. If one denotes the set of maximal ideals in A by Max(^4), then A is strongly semisimple iff S(A) = C\MGMBX(A) M = (0). We assume that A is strongly semisimple and note that this implies that A is Jacobson semisimple. One may equip Max(.4) with t...
متن کاملThe starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings
The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1996
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-96-03319-9